Compact quasi‐Einstein manifolds with boundary
نویسندگان
چکیده
The goal of this article is to study compact quasi-Einstein manifolds with boundary. We provide boundary estimates for similar previous results obtained static and V-static spaces. In addition, we show that connected satisfying a suitable pinching condition must be isometric, up scaling, the standard hemisphere S + n $\mathbb {S}_{+}^{n}$ .
منابع مشابه
The Lichnerowicz Equation on Compact Manifolds with Boundary
In this article we initiate a systematic study of the well-posedness theory of the Einstein constraint equations on compact manifolds with boundary. This is an important problem in general relativity, and it is particularly important in numerical relativity, as it arises in models of Cauchy surfaces containing asymptotically flat ends and/or trapped surfaces. Moreover, a number of technical obs...
متن کاملHandlebody Splittings of Compact 3-Manifolds with Boundary
The purpose of this paper is to relate several generalizations of the notion of the Heegaard splitting of a closed 3-manifold to compact, orientable 3-manifolds with nonempty boundary.
متن کاملA Combinatorial Curvature Flow for Compact 3-manifolds with Boundary
We introduce a combinatorial curvature flow for piecewise constant curvature metrics on compact triangulated 3-manifolds with boundary consisting of surfaces of negative Euler characteristic. The flow tends to find the complete hyperbolic metric with totally geodesic boundary on a manifold. Some of the basic properties of the combinatorial flow are established. The most important one is that th...
متن کاملRigidity of Compact Manifolds with Boundary and Nonnegative Ricci Curvature
Let Ω be an (n + 1)-dimensional compact Riemannian manifold with nonnegative Ricci curvature and nonempty boundary M = ∂Ω. Assume that the principal curvatures of M are bounded from below by a positive constant c. In this paper, we prove that the first nonzero eigenvalue λ1 of the Laplacian of M acting on functions on M satisfies λ1 ≥ nc2 with equality holding if and only if Ω is isometric to a...
متن کاملGradient estimates for eigenfunctions on compact Riemannian manifolds with boundary
The purpose of this paper is to prove the L∞ gradient estimates and L∞ gradient estimates for the unit spectral projection operators of the Dirichlet Laplacian and Neumann (or more general, Ψ1-Robin) Laplacian on compact Riemannian manifolds (M, g) of dimension n ≥ 2 with C2 boundary . And we also get an upper bounds for normal derivatives of the unit spectral projection operators of the Dirich...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2022
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.202000045